Effects of Temperature and Axial Strain on Four-Wave Mixing Parametric Frequencies in Microstructured Optical Fibers Pumped in the Normal Dispersion Regime
نویسندگان
چکیده
A study of the effect of temperature and axial strain on the parametric wavelengths produced by four-wave mixing in microstructured optical fibers is presented. Degenerate four-wave mixing was generated in the fibers by pumping at normal dispersion, near the zero-dispersion wavelength, causing the appearance of two widely-spaced four-wave mixing spectral bands. Temperature changes, and/or axial strain applied to the fiber, affects the dispersion characteristics of the fiber, which can result in the shift of the parametric wavelengths. We show that the increase of temperature causes the signal and idler wavelengths to shift linearly towards shorter and longer wavelengths, respectively. For the specific fiber of the experiment, the band shift at rates –0.04 nm/oC and 0.3 nm/oC, respectively. Strain causes the parametric bands to shift in the opposite way. The signal band shifted 2.8 nm/mand the idler 5.4 nm/mExperimental observations are backed by numerical simulations.
منابع مشابه
Frequency-dissymmetric parametric sideband generation in a microstructured fiber
We experimentally demonstrate the nonlinear generation of frequency-dissymmetric sidebands by injecting picosecond pump pulses inside the fundamental mode of a silica-core photonic crystal fiber in its normal dispersion regime. A systematic analysis highlights the fact that this phenomenon is based on the combination of the two major nonlinear effects occurring inside the fiber: self-phase modu...
متن کاملSuppression of Four Wave Mixing Based on the Pairing Combinations of Differently Linear-Polarized Optical Signals in WDM System
Data transmission in optical systems and increased transmission distance capacity benefit by using optical amplification wavelength division multiplexing (WDM) technology. The combination of four waves (FWM) is a non-linear effect in the wavelength division multiplex (WDM), when more than two wavelengths of light in a fiber launch will occur. FWM amount depends on the channel, the channel spaci...
متن کاملDual-pumped degenerate Kerr oscillator in a silicon nitride microresonator.
We demonstrate a degenerate parametric oscillator in a silicon nitride microresonator. We use two frequency-detuned pump waves to perform parametric four-wave mixing and operate in the normal group-velocity dispersion regime to produce signal and idler fields that are frequency degenerate. Our theoretical modeling shows that this regime enables generation of bimodal phase states, analogous to t...
متن کاملQuantum random number generator using a microresonator-based Kerr oscillator.
We demonstrate an all-optical quantum random number generator using a dual-pumped degenerate optical parametric oscillator in a silicon nitride microresonator. The frequency-degenerate bi-phase state output is realized using parametric four-wave mixing in the normal group-velocity dispersion regime with two nondegenerate pumps. We achieve a random number generation rate of 2 MHz and verify the ...
متن کاملLimits of coherent supercontinuum generation in normal dispersion fibers
We study the largely unexplored transition between coherent and noise-seeded incoherent continuum generation in all-normal dispersion (ANDi) fibers and show that highly coherent supercontinua with spectral bandwidths of one octave can be generated with long pump pulses of up to 1.5 ps duration, corresponding to soliton orders of up to N 600. In terms of N , this corresponds to an approximately ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014